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I. Math Phobia? Mechanics versus Application 
 

Do you have a math phobia?  You are not alone.  You may be wondering, “Why can’t we study 

this subject without the math?” We can, but we will not get very far in our understanding if we 

cower to the math.  Try thinking of it this way.  Math is a tool, like an iPhone, a blender, a guitar, 

or a circular saw.  You first must learn how to operate the tool or device before you can do stuff 

with it; enjoy all its features.  Of course, the fun is in applying the tool, not in learning how the 

tool works.  It is not much fun just knowing how an iPhone works if you can’t use it to do 

interesting stuff.  You can’t enjoy the music trapped inside a guitar if you do not know how to 

play it.  The same is true with math.  You first must learn how to use the tool, the mechanics, 

before you can have fun applying it.  So don’t confuse the mechanics of the tool with the 

application of the tool.  In the text we apply the tool.  In this appendix we learn the mechanics of 

the tool.  This appendix is like the operator’s manual for the math that will be used in this class.  

As with any operator’s manual, the best way to feel comfortable with the tool is to grab a cup of 

your favorite drink, get in a quiet place and read the manual very carefully, patiently, and 

practice.  I promise if you will do this your math phobia will subside rather quickly. I am 

confident of this because the math we will be using is just middle school math; math you have 

probably just forgotten.  You just need to review, but you must read carefully and be patient.  

With that, let’s get going. 

II. It’s All About Relationships 

Consider the following everyday type statements:  “If I go to college, I’ll get a job,” “ If I 

brush my teeth, I won’t have to wear dentures when I am older,” “if you don’t change the radio 
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station I will scream,” “If I cross the street when the light is red then I won’t get run over,”  “If I 

learn to play the guitar all the girls will like me,”  “If Virginia Tech makes the field goal they 

win the game,” “If I cut my hair this way then I’ll be more attractive and he may ask me out,” 

and “if I exercise daily I will be more healthy.”  Do you notice a pattern? All of these statements 

have the same form or structure: “if P happens then Q will happen.”  This type of reasoning or 

argument structure is formally known as either a conditional statement or a hypothetical 

syllogism.  Conditional statements are ubiquitous in everyday life and are the foundational 

argument structure upon which all of science is based.   

In science, the conditional statement is usually expressed as a relationship between variables.  

For example as discussed in chapter 1 of the book: “if we increase the grams of carbohydrates by 

one gram then the calories will increase by 4 grams.”  Grams of carbohydrates and grams of 

calories are the two variables that are related.  Or from nutrition/medicine: “If the amount of 

LDL cholesterol is decreased then the probability of suffering a heart attack will decline.”  The 

two related variables here are the amount of LDL cholesterol and the probability of suffering a 

heart attack.  Or from economics: “If the price of gasoline increases then the quantity of gasoline 

sold will decrease.”  The price and quantity of gasoline are the two variables related.  These are 

just a few examples and it would not be an oversimplification to say that this entire class is about 

the relationships between variables.  This leads to the natural question:  How can we express or 

show the relationship between variables? 

There are generally three ways to demonstrate the relationship between variables: 

1. Numerically – List in a table form different values of variables. 

2. Graphically – Plot or graph the relationship between variables. 
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3. Mathematically – Use function or equation notation to state the relationship between 

variables. 

Each of these methods has advantages and disadvantages, depending on the issue at hand and the 

purpose of showing the relationship between variables.   However, due to the genius of some guy 

named René Descartes, it is now known that these are just different ways of expressing the same 

relationship; they are just different languages for expressing the relationship between variables.  

So if there is a mathematical form for a relationship between variables, it can be shown to have a 

graphical and numerical representation as well.  In general there are two types of relationships: 

linear and nonlinear.  These can further be partitioned into relationships between two variables 

and the relationship between more than two variables.  We cover each of these cases in what 

follows.   

III. Linear Relationships 

In mathematics the number of variables is equivalent to the number of dimensions in the 

analysis.  Thus if there are 2 variables there are then 2 dimensions.  If there are more than two 

variables then there are more than 2 dimensions. 

Linear Relationships with Two Variables  

Let’s start with an example you are already familiar with.  As we discussed in the first 

chapter, every gram of protein translates into 4 grams of calories, ceteris paribus.1  We can write 

this in its mathematical form (function) as Cp = 4× Np.  Now suppose we have 5 different 

                                                           

1 The term ceteris paribus is Latin and means all else constant.  See the methodology appendix in the book, 
specifically page 236, for more discussion. 
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protein levels: Np = 0, 21, 34, 42, 58.  If we substitute these into the equation we get the 

numerical form of this relationship or the table  

 

 

 

Note we could alternatively present this relationship graphically.  Because there are only two 

variables then we can use a two-dimensional graph as in figure A.1. 

 

Let’s put on our coal miner’s hat and try to shed some light on these different ways of presenting 

these relationships considering each in isolation. 

 Assume you just have the mathematical form.  For the mathematical form one has to do 

some calculations to get the actual numbers and the general relationship (e.g., positive or 

negative) may not be immediately obvious to some.  However, if one knows the 

mathematical form the other representations can be easily generated. 

0, 0

21, 84
34, 136

42, 168

58, 232

0
50

100
150
200
250

0 10 20 30 40 50 60 70

Ca
lo

rie
s

Protein
Figure A.1

Calorie Protein Relationship

Table A.1 Calories From Protein  
NP CP 
0 0 
21 84 
34 136 
42 168 
58 232 



 7 

 Assume you just have the numerical form.  For the numerical form no calculations are 

necessary to determine the actual calorie value associated with a particular protein value, 

you just read off the table.  However, the general relationship is not immediately obvious 

from just looking at the table and so one is not exactly sure what the value of calories 

would be for other values of protein (e.g., suppose protein level was 18 or 49). 

 Assume you just have the graphical form.  For the graphical form the general 

relationship between the variables is visual and immediately obvious.  It is positive: as 

protein increases, calories increases.  However, like the numerical form, it is not clear 

what the exact value of the calories would be even if you knew the protein value, for 

some protein value not shown in figure (e.g., 50).  It is also not clear if the observed 

relationship holds for other values of protein. 

So each method (language) has some advantages and disadvantages.   

This example is a special case of the more general relationship known as a linear equation 

with two variables.  That is, recall from middle school mathematics that the formula for a line is 

Y = b0 + b1 × X, which we write more simply as 

0 1( .1)    A Y b b X= +  

Recall further that Y is called the dependent variable (a.k.a. left hand side variable, response 

variable, or an endogenous variable) and X is called the independent variable (a.k.a. a right 

hand side variable, explanatory variable, control variable, or an exogenous variable).  The term 

b0 is called the intercept coefficient and is the value of the dependent variable Y when the 

independent variable X is zero.  The term b1 is called the slope coefficient and indicates how 

much the dependent variable Y will change if the independent variable X is changed by one unit.  

Alternatively stated, the slope coefficient is the one unit “effect” of X on Y.  Consequently, the 
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slope coefficient shows the relationship between X and Y.  The coefficients (intercept and slope) 

are considered to be constants that do not change – they are not variables.  Alternatively, X and Y 

are variables.  If b1 is positive then there is a positive relationship between X and Y.  If b1 is 

negative then there is a negative relationship between X and Y. 

  

 

 

 

Panel A. Positive relationship b0  > 0, b1 > 0.     Panel B. Negative relationship b0 > 0, b1 < 0. 

Because the intercept and slope coefficient can be either negative, zero, or positive we need 

some way to indicate the “sign” (i.e., negative, zero, or positive) within the equation.  We will do 

this by indicating under each coefficient if the sign is positive (+), zero (0), or negative  

(–).  So for the general graph in panel A we would write the corresponding general equation as 

0 1( .2)
                (+)     (+)
A Y b b X= +

 

NOTE: This (+) sign under the variable X does not mean X is positive or that it is increasing.  It 

simply means there is a positive relationship between Y and X. 

 

Think break!!! What would these two panels look like if b0 < 0 and how would you write the 

equation? 
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How does this general formula relate to our protein-calorie example?  Well in the protein-

calorie example we had the equation CP = 4×NP.  Note this is just then a special case of our 

general equation (A.2) with a little relabeling: Y to be Cp (or more simply Y ≡ Cp, where ≡ is just 

a quick way of saying ‘by definition’) and X ≡ Np.  This would give us Cp = b0 + b1 Np, but this 

is still not our equation.  However, if we also let the intercept in this equation be zero (b0 = 0) 

and the slope be four (b1 = 4), then we get our earlier equation CP = 4 NP as a special case of the 

general equation.  Note graphically the calorie-protein relationship shown earlier is just a special 

case of panel A.  Of course numerically we just substitute the actual values in for X ≡ Np and we 

get the values for Y ≡ Cp. 

Well these three different representations of the relationship between two variables are rather 

useful don’t you think?  But there is an obvious limitation.  In many cases more than one 

variable determines the value of some other variable.  For example, we know that calories are 

actually determined by the amount of protein and the amount of carbohydrates and the amount 

of fat.  In this case there are then four variables that are related (i.e., calories, protein, 

carbohydrates, and fat).  Thus, we must extend the above analysis to beyond two variables or 

equivalently beyond two dimensions. 

Linear Relationships with More Than Two Variables 

Let’s again start with an example.  In the previous 2 dimensional (variable) example we were 

implicitly assuming the level of carbohydrates and fats were each zero.  This is obviously 

unrealistic because as we know from chapter 1 (equation 1.1), the mathematical form or 

formula for calculating calories is actually 

Cals  =  9×NF + 4×NC  + 4×NP. 
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Let’s repeat the exercise we did above. Suppose we had the following data for four different food 

items for their combinations for protein, carbohydrates, and fat.  In numerical form we would 

have the following table.  Note the (non zero) protein values are exactly the same as they were in 

table A.1.   

 

 

 

However, clearly the calories are very different from table A.1.  Furthermore, note for this table 

the main difference is with respect to protein, but importantly now the level of carbohydrates is 

not assumed zero but is constant at 50 across these items and more importantly there are two fat 

levels (35 and 55). 

How would you display the information in table A.2 graphically?  Remember, A PIECE 

OF PAPER IS A TWO DIMENSIONAL SURFACE. One dimension is up and down and the 

other dimension is left and right.  Because it is a two dimensional surface and variables 

correspond to dimensions, then you can only graph two of these four variables at a time.2  Let’s 

first just plot protein against calories as we did in figure A.1 but now with this new data as 

shown in figure A.2. 

                                                           

2 It is true you could draw a three dimensional surface on the two dimensional piece of paper, but this technically 
employs an optical illusion as there are really only two dimensions.  The visual physical world as we know it 
consists of three dimensions: length, height, and depth.  Mathematics can handle much higher dimensions (i.e. 
relationship between more than 3 variables) but they are difficult (impossible) to represent visually once we get 
beyond three dimensions. 

Table A.2. Calories From Macronutrients 
NF NC NP Cals 
35 50 21 599 
35 50 34 651 
55 50 42 863 
55 50 58 927 
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Compare figure A.2 to figure A.1.  What looks different?  Yeah, the calorie values are different 

even though the protein values are the same.  In figure A.1 when the points were connected it 

provided a straight line.  If you connect the points in figure A.2 you don’t get a straight line.  

Why?  Simply stated, because the ceteris paribus condition is violated.  All else is not the same 

or constant.  The numbers in figure A.1 (and table A.1) are based on the assumption that the 

levels of carbohydrates and fat are zero.  Obviously from table A.2 and figure A.2 they are not 

zero. 

Let’s see if we can figure out what is going on.  Note if you go back to table A.2 there is no 

difference across these four items in terms of carbohydrates, they are all 50, so that can’t be the 

difference.  However, note that there are two levels of fat: 35 g and 55 g.  Is this the culprit? 

Let’s write out the calculations using the equation for each point – going left to right – in the 

graph. 
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First point: 

599 9 35 4 50 4 21
515 4 21

= × + × + ×
= + ×

 

Second point: 

651 9 35 4 50 4 34
515 4 34

= × + × + ×
= + ×

 

Fourth point: 

927 9 55 4 50 4 42
695 4 42

= × + × + ×
= + ×

 

Third point: 

863 9 55 4 50 4 58
695 4 58

= × + × + ×
= + ×

 

Look at these four cases carefully.  Note both of the first two cases have the value 515 followed 

by the contribution of protein (i.e., 4 × NP).  However, the third and fourth cases have the value 

695 followed by the contribution of protein (i.e., 4 × NP).  Thus if we wanted to we could write 

two equations for these four points.   

First and Second Point Equation: 

515 4 PCals N= + ×  

Third and Fourth Point Equation: 

695 4 PCals N= + × . 

Hopefully you are saying, ‘Wait a minute Mr. Math Man’, these two equations only differ by 

the intercept: they have the same slope but just different intercepts.  Using the general formula 

for a line Y = b0 + b1 X, in the first and second points the intercept is b0 = 515 and the slope is b1 

= 4, whereas in the third and fourth points the intercept is b0 = 695 and the slope is b1 = 4.  Let’s 

therefore plot these two equations.   
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Notice then these two equations are parallel.  That should come as no surprise because the 

definition of parallel lines is lines that have the same slope but different intercepts.  Why do 

they have different intercepts?  If you go back and look at the data you will see that the 

difference is that the level of fat increased from the lower line to the upper line.  Stated 

alternatively, the equation shifted up when the level of fat increased. 

So what is the more general point to be taken from this example?  (If you are asleep, wake 

up…THIS IS EXTREMELY IMPORTANT).  When you draw a graph on a two dimensional 

surface, such as a piece of paper, you can only represent the relationship between two variables 

at a time.  Thus movements along the curve show the relationship between the two variables 

shown on the vertical and horizontal axis.  Changes in other variables must be represented by 

shifts in that curve. 

Ok, now that you have seen a specific example let’s talk about the more general case.  Recall 

when we had two variables we wrote the equation for a line as Y = b0 + b1 X.  Well now we are 
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going to extend this to many variables such that the mathematical form is 

0 1 1 2 2 3 3 ... .M MY b b X b X b X b X= + + + + +  

In this case there are M independent or explanatory variables and they are just numbered from 1 

to M (i.e., X1, X2, X3,…, XM).  The variable Y is still the dependent variable and b0 is still the 

intercept coefficient and is the value of Y if all the explanatory variables are zero.  Each of the 

other bs is again called a slope coefficient and represents the contribution a one unit increase in 

the corresponding X will have on Y or the one unit “effect” of the specific X on Y, ceteris paribus 

(i.e., holding all other variables constant). 

 Ok, are you starting to freak out?  Don’t. Take a deep breath.  Chill out.  You have already 

seen this at work because the equation Cals =  9×NF + 4×NC  + 4×NP is just a special case of this 

general equation.  How you say?  Well just re-label things.  Note if you substitute Cals ≡ Y, NF ≡ 

X1, NC ≡ X2, NP ≡ X3, b0 = 0, b1 = 9, b2 = 4, b3 = 4 into the general equation above you get the 

formula for calculating calories.  Note in this example all of the values of the bs were positive, 

implying that if any of the Xs increase the Y will increase, but this does not have to be the case. 

For example, suppose we are interested in the relationship between weight (Y), energy intake 

(X1), and energy expenditure (X2).  In this case energy intake will increase weight but energy 

expenditure will decrease weight.  In this case the value of the energy intake slope coefficient is 

positive (b1 > 0) but the value of the energy expenditure slope coefficient is negative (b2 < 0).  

To denote these different “effects” we will indicate under each coefficient if it is positive or 

negative such as follows 

0 1 1 2 2 3 3( .3) ... .
                       (+)     ( )      (+)             (+)

M MA Y b b X b X b X b X= + + + + +
−
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In this case, the effect of X1 on Y is positive (b1 > 0), the effect of X2 on Y is negative (b2 < 0), 

the effect of X3 on Y is positive (b3 > 0), and the effect of XM on Y is unknown– it could be 

positive or negative. 

What about the graphical form of this equation, how do we show that?  Proceed in the 

following stepwise fashion: 

1. Choose the X variable you want to show related to Y (e.g., X1) 

2. Label the horizontal axis X and the vertical axis Y. 

3. Look at the sign under the slope coefficient associated with the X variable you chose.  If 

it is positive then draw a straight line from southwest to northeast.  If it is negative draw a 

straight line from northwest to southeast.  This graph shows the relationship between the 

X you chose and Y. 

4. To show the effect on this graph of changing some other X variable, look at the sign 

under the slope coefficient of this other X variable.  If it is positive, then increasing this 

variable will shift the line from step 3 out (to the right).  If it is negative, then increasing 

this variable will shift the line from step 3 in (to the left).   

A quick way to summarize these steps is to give the schematic 

 

 

 

 

            

  

 

Schematic Summary of Drawing Rule 

Movement Along Line Shift in Line 
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NOTE: Just by relabeling the variables the first explanatory variable (X1) can be any variable 

and the actual signs under the variables will depend on the relationship being discussed.   

Linear Isoquants  

Often we will be interested in answering questions such as, 

If I want to hold the level of calories constant how much would I have to decrease the amount of 

one food relative to another? 

We implicitly ran into this question in chapter 7.  Suppose we have two foods, with quantities in 

a common unit F1 and F2.  The common unit could be serving size, count, pieces, or grams.  

Food one has c1 calories per one unit and food two has c2 calories per one unit.  Total calories 

from the two foods can then be written as  

Cals =  c1 F1 + c2 F2. 

Note we could solve this equation for the quantity of food one 

2
1 2

1 1

.Cals cF F
c c

= −  

This equation is useful for telling us the tradeoff between food one and food two holding the 

quantity of calories constant.   Specifically, the ratio of c2 ÷ c1 tells us the quantity of food one 

(F1) you must give up for every additional unit of food two (F2) you consume to hold caloric 

intake constant.  For example, if a chicken breast from KFC has 320 calories but a drumstick has 

160 calories, then for every chicken breast you eat, you must eat 2 less drumsticks (i.e., 2 = 320 

÷ 160) to hold caloric intake constant.  Thus the ratio c2 ÷ c1 measures the opportunity cost (what 

you give up) of consuming one more unit of F2 in terms of calories of F1.  Because we are 

holding the quantity calories constant this type of equation is often called an isoquant.  The term 

“iso” is Greek for “equal,” so isoquant means “equal quantity”.  In this case, holding the 

quantity of calories equal.     
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How do you get the isoquant in general?  Simple.  The same as you did in this example – 

just solve the equation like (A.3) for the variable you want.  For example suppose you want the 

equation for X1.  From middle school algebra just proceed in two steps: 

1. Subtract 0 2 2 3 3 ... M Mb b X b X b X+ + + +  from both sides of the equation (A.3) to yield 

 0 2 2 3 3 1 1... .
    (+)  ( )      (+)             (+)         (+) 

M MY b b X b X b X b X− − − − − =
−

 

2. Now divide both sides of this equation by b1 to yield 

0 2 3
1 2 3

1 1 1 1 1

1( .4) .

                  (+)     ( )  ( )        (+)               ( )

M
M

b b b bA X Y X X X
b b b b b

= − − − − −

− − ±



 

VERY IMPORTANT!!!: The sign under the coefficient in step 2 includes the minus sign and 

therefore you have to keep track of the signs.  For example, note because b2 is negative (b2 < 0) 

so when you subtract b2 X2 from both sides in step 1, the effect on b1 X1 is positive (i.e., the 

negative of a negative is a positive). In the second step when you divide through by b1 then if b1 

is positive (b1 > 0) the “signs” do not change from step 1. However, if b1 is negative (b1 < 0) the 

“signs” do change from step 1. 

Given all of this is extremely important that you understand, let’s pause and do an example.  

Suppose you have the general linear equation notation for three variables 

0 1 1 2 2 3 3( .5) .
                (+)   (+)     ( )      (+)  
A Y b b X b X b X= + + +

−  

You are then asked to do the following tasks: 
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Task 1: Draw a graph of the relationship between Y and X1 and show what happens to the 

graph when X2 increases and then what happens if X3 increases. 

Answer: Following the steps outlined above the graphs will look as follows. 

 

 

 

 

 

 

Panel A. X1 and Y with increase in X2        Panel B. X1 and Y with increase in X3 

 

Task 2: Solve this equation for X1 to determine the sign of the tradeoff between X1 and X2 and X1 

and X3 holding Y constant (i.e., determine the isoquant equation). 

 Answer: Following the steps  

0 2 3
1 2 3

1 1 1 1

1 .

                  (+)     ( )  ( )        (+)    

b b bX Y X X
b b b b

= − − −

− −  

Task 3: Draw the isoquant relationship between X1 and X2 and X1 and X3 holding Y and the other 

X constant. 
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Think Break!!! 

1. What would the graphs look like if the task was to draw a graph of the relationship between Y 

and X2 and show what happens if we decrease X1 and then if we decrease X3. 

2. What would the graphs look like if b1 < 0? 

Ok, so given a general linear mathematical relationship you can show it graphically.  Can 

you show it numerically?  That is, can you create a table of different values of Y with different 

values of the Xs.  NO.  Why?  Because you do not know the actual values of the coefficients; the 

b0, b1, etc.  To actually generate numbers using the equation you need actual values of the 

coefficients and values of the X variables.   

Think Break!!! Given the following equation, answer the following questions: 

Y = 5 + X1 – .5X2 

a. What is the value of b0, b1, and b2 in this case? 

b. How would you write this in the more general notation of equation (A.5)? 
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c. Fill out the following table using this equation  

X1 X2 Y 

10 10  

15 10  

20 20  

25 20  

 

d. Draw the graph for this data of Y and X1.  Explain why it looks this way. 

e. Draw the graph for this data of Y and X2.  Explain why it looks this way. 

f. Solve this equation for X2 and draw its graph. 

IV. Nonlinear Relationships 

If you have gotten to this point and understand the linear variable relationship between 

graphs and functions, then the more general notation should be a snap. To this point we have 

been assuming the relationship between the independent variables and dependent variable is 

linear. Stated another way, we have been assuming as the independent variable changes the 

dependent variable changes at a constant rate (i.e. the slope coefficients are constant). However, 

many relationships are not linear but rather are nonlinear.  A nonlinear relationship is one where 

the dependent variables changes at a different rate as the independent or explanatory variable 

changes.  Here we begin as in the previous section with two dimensional relationships (two 

variables) before turning to multidimensional relationships. 

Nonlinear Relationships with Two Variables 

A growth function is a good example of a nonlinear relationship between two variables, of 

which the BMI growth charts are a specific example.  In this case the two variables are BMI and 

age. 
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Figure A.4.  Body mass index-for-age percentiles: Girls, 2 to 20 years 

Consider the dark 50th percentile curve in figure A.4.  Notice that the BMI actually declines until 

about 5.5 years of age (i.e., the relationship between age and body mass index is negative).  

However, from 5.5 to about 17 years of age the BMI increases at an increasing rate and then the 

rate of increase slows down.  Thus the rate of change (or slope) of the relationship between age 

and BMI is not constant and therefore by definition the relationship is not linear.  This is a 

graphical presentation of a nonlinear relationship.  What would a nonlinear equation look like? 
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Here are two examples of nonlinear equations along with their graphs. 

 

In the left panel, the value of Y is increasing at an increasing rate as X increase.  That is, the 

slope increases as X increases.  In the right panel, the value of Y is increasing at a decreasing 

rate as X increases.  In this case, the slope is decreases as X increases. 

Nonlinear relationships are very important in science and especially in economics as there 

are many relationships we wish to consider that are nonlinear.  Two of the more versatile classes 

of functions are concave functions and convex functions.  A concave function is one where the 

slope changes at a decreasing rate.  A convex function is one where the slope changes at an 

increasing rate.  The panels below show a concave function and a convex function.3 

                                                           

3  Technically these are examples of strictly concave and convex functions. 
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X 

Y 
 

5 

X 
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Consider the concave function in panel A.  Note up to XB the value of Y is increasing.  However, 

the rate at which Y is increasing is decreasing. That is, the slope is decreasing as X increases up 

to point XB.  At point XB the value of Y is at the maximum (Ymax).  Note also at the maximum the 

slope of the function is zero!  Beyond point XB the value of Y is decreasing.  The rate at which Y 

is decreasing is decreasing.  This may seem unintuitive but you must remember that the slope is 

negative and it is getting more negative (e.g. going from – 5 to – 7).  Because it is getting more 

negative it is decreasing.  If it were getting less negative (moving toward zero) then it would be 

increasing (e.g., – 7 to – 5).  But yes, the absolute value of the slope is increasing. 

Now consider the convex function in panel B.  Note up to XB the value of Y is decreasing.  

However, the rate at which Y is decreasing is increasing. That is, the slope is increasing as X 

increases up to point XB.  Again, this may seem unintuitive but you must remember that the slope 

is negative but it is getting less negative (e.g., – 7 to – 5).  Because it is getting less negative it is 

increasing.  At point XB the value of Y is at the minimum (Ymin).  Note also at the minimum the 
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slope of the function is zero.4  Beyond point XB the value of Y is increasing.  The rate at which 

Y is increasing is increasing.  The slope is increasing.  

The concave and convex functions are so useful because they can be combined to represent 

several types of relationships.  The most common combined form (i.e., having concave and 

convex components) we will use in this class is so common that it is often referred to as the 

“three stage” production function, which looks a lot like the BMI growth function.  This concept 

is first encountered in chapter 3 of the book (pp. 52-53). 

 

Up to point A this function is convex.  Beyond point A this function is concave.  By definition we 

then know that up to point A, Y is increasing at an increasing rate as X increases (i.e., the slope is 

increasing).  This is called stage one and is often referred to as the increasing returns stage. 
                                                           

4 The astute reader probably notices that the maximum value and minimum value each occur where the slope is zero.  
A slope equal to zero is a necessary condition for both a maximum and minimum, but it is not sufficient.  Sufficient 
conditions relate to the change in the slope as we move away from the maximum (minimum) point and will not be 
considered in this course.  For most of the applications in this class we will be working with strictly concave or 
strictly convex functions and in these cases the slope equal to zero is necessary and sufficient to denote a maximum 
for the strictly concave function and a minimum for the strictly convex function.  

        • 

Y 

YMAX 

X* 

 A    • 

X 

B 

Figure A.5. Three Stage Production Function 
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Between points A and B, Y is still increasing but at a decreasing rate as X increases (the slope 

is decreasing).  This is called stage two and is often called decreasing returns.  Point B represents 

where Y is at its maximum value.  The value of X where Y is at its maximum is denoted as X*.  

Beyond point B is stage three. 

What does this have to do with nutrition and why is it useful?  This basic graph underscores 

the basic idea underlying the nutrient recommendations.  Over a certain range (up to point A) we 

expect the benefits to eating more of a certain nutrient to be increasing but beyond that point we 

expect the benefits to not be as dramatic.  At some point we reach the optimal level of the 

nutrient and beyond that point the more of the nutrient starts to possibly deteriorate health and 

could become toxic.  

So what type of general notation are we going to use to denote nonlinear relationships like 

we did in equation (A.2)?  There are an infinite number of nonlinear functions so we are not 

going to write out what mathematicians call the “functional form.”  Instead we are just going to 

use general function notation.  What is general function notation?  General function notation is 

a simple and concise way of just saying one variable depends on another variable without 

indicating if the actual relationship is linear or nonlinear.  For example we can say BMI increases 

with Age after the age of about five, as indicated by the growth charts.  However, we can write 

this more concisely and compactly as BMI = f(Age), which is literally read as ‘BMI is a function 

of Age.’  Of course this does not indicate what the relationship is between BMI and Age.  To 

remedy this we will use the same technique as before and write this as  

( ).
                (+)
BMI f Age=
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NOTE: Remember the (+) sign under the variable Age does not mean age is positive or that 

age is increasing.  It simply means there is a positive relationship between age and BMI.  As age 

increases BMI increases.  As age decreases BMI decreases.  

Now the observant reader will probably be saying, ‘yeah this tells us the relationship is 

positive but it does not tell us if the slope is increasing or decreasing over the entire range.’  You 

are right, so to handle the four possible cases: (i) the relationship is always positive, but the 

positive slope may vary in magnitude, (ii) the relationship is always negative, but the negative 

slope may vary in magnitude, (iii) the relationship may be positive over the first segment and 

then negative over the second segment, and (iv) the relationship may be negative over the first 

segment and then positive over the second segment, we will use the following notation.  

( .5) ( )        or     ( ) or     ( ) or     ( ).
                     (+)                            ( )                          ( )                          ( )
A Y f X Y f X Y f X Y f X= = = =

− ± 

 

IMPORTANT:  In this class we will often write something like A.5 and then draw a graph that 

shows this relationship visually.  Because this notation does not indicate if the relationship is 

linear or nonlinear often we will just draw the relationship as if it is linear. 

 
Nonlinear Relationships With More Than Two Variables 

As we have already discussed in the linear relationship case, we are often interested in the 

relationship between more than two variables.  The concepts we used in the more than two 

variable linear case extend quite easily to the more than two variable nonlinear case.  

Consequently the general function notation we will use for nonlinear relationships in more than 

two variables is very similar to equation (A.3).  So in the nonlinear case with more than two 

variables we will just use the following notation 

1 2 3( .6) ( , , ,.., ).
                     (+)  ( ) (+)     ( ) 

MA Y f X X X X=
− +
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What does (A.6) say?  It is a language stating a paragraph very concisely.  It simply says that 

the dependent variable Y is determined by, or depends on, or is a function of M variables.  As X1 

increases, Y increases.  As X2 increases, Y decreases.  As X3 increases, Y increases and etc. 

Let’s work in reverse and take a simple graphical example and then indicate how we would 

write it in general function notation.  Figure A.6 gives the weight for age for males and females 

between the ages of 14 and 20. 

  

 

 

 

 

 

 

 

How many variables are involved here?  There are three: Weight, Age, and Gender.  We note 

that weight and age are positively related, ceteris paribus.  That is, holding gender constant, 

weight increases at a decreasing rate.  What is the relationship between weight and gender?  

Again, holding age constant, we see that weight is higher if the gender is male.  To represent 

these relationships mathematically we would write 
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( .7) ( , ).
                               (+)     (+) 
A Weight f Age Male=

 

Equation (A.7) says that as Age increases (ceteris paribus) Weight will increase and that as Male 

increases (ceteris paribus) then Weight will increase.  You may be wondering, “how can Male 

increase?”  In this case Male is what we call an indicator variable.  An indicator variable is a 

variable that can take on one of two values (usually 0 and 1).  If the indicator variable is ‘on’ 

(e.g., Male = 1) then the relationship applies under that case.  If the indicator variable is ‘off’ 

(e.g., Male = 0) then the relationship applies under the alternative case (e.g., Female).  So if you 

were given equation (A.7) and asked to draw it, you would draw a graph like figure A.6.  Note 

then the variable Male is a shift variable when drawing Weight versus Age.     

So what are the general rules for drawing a graph for a multidimensional general 

function such as (A.6)?  The procedure is very similar to that of the linear case: 

1. Choose the X variable you want to show related to Y. 

2.  Label the horizontal axis X and the vertical axis Y.  

3. Look at the sign under the variable with the X variable you chose.  If it is positive 

then draw a line (or curve) from southwest to northeast.  If it is negative draw a line 

(or curve) from northwest to southeast.  This graph shows the relationship between 

the X you chose and Y.  

4. To show the effect on this graph of changing some other X variable, look at the sign 

under this other X variable.  If it is positive, then increasing this variable will shift the 

curve from step 3 out.  If it is negative, then increasing this variable will shift the 

curve from step 3 in.  
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 Schematically the process is basically the same as before. 

 

 

 

 

NOTE AGAIN: Just by relabeling the variables, the first explanatory variable (X1) can be any 

variable and the actual signs under the variables will depend on the function being discussed. 

Nonlinear Isoquants 

As we have already seen, isoquants are especially useful devices for showing tradeoffs 

between X variables holding the dependent variable Y constant.  A good understanding of 

isoquants also allows us to draw three dimensional diagrams in two dimensions.   

So where does the isoquant come from graphically in the nonlinear more than two variable 

case?  Let’s consider the figure A.7 below.  This figure shows the side view of a mountain on top 

and then a contour view of the mountain on the bottom.  There are three variable in this figure: 

the height or elevation of the mountain (let’s label this Y), the North-South direction (let’s label 

this X1) and the East-West direction (let’s label this X2).  So there are three dimensions 

represented by the variables Y, X1, X2.  As we know, and have mentioned, a piece of paper is a 

two dimensional surface so we effectively want to draw the relationship between the three 

variables in two dimensions and that is what the contour map does.  Pretend you are standing at 

sea level (see stick figure).  You want to walk to the house on the far left side of the diagram.  

How could you get there?  Well if you walk due West (directly left) you will start climbing the 

mountain.  As you walk you will go from sea level to 25 feet above sea level, 50 feet above sea 

            

  

 

Schematic Summary of Drawing Rule 

Movement Along Line Shift in Line 
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level, 75 feet above sea level, 100 feet above sea level, and to the top of the highest peak and 

then you will walk back down, once again passing 100 feet, then75 feet, down to about 60 feet 

before ascending the second peak and then finally walking down the second peak until you get to 

the house, which is at sea level.   

 

 

 

 

 

 

 

Figure A.7.  Contour Map of a Mountain 

So that is one way to get there.  However, there is an easier way to get to the house.  If you 

starting walking South West at sea level and just stay at sea level (walking Southwest, then 

West) you would also get to the house.  Simply stated, you walked around the mountain and you 

stayed at the same elevation!  Now note the contour map on the bottom provides the exact same 

information about the elevation of the mountain, but without showing the mountain.  That is, the 

most outside ring represents sea level, the next inner ring represents all elevations of 25 feet, the 

next inner ring represents all elevations of 50 feet, etc.   
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Let’s now apply this contour logic to the health production function from chapter 3 (p. 52-

54) but which now depends on two variables, like protein (X1) and carbohydrate (X2) intake, 

where we will assume that as these increase health (Y) increases, so we will write the relationship 

in general nonlinear notation as 

1 2( .8) ( , ).
                     (+) (+) 
A Y f X X=

 

Graphically, then we would have the health “mountain” as 

 

 

 

 

 

 

 

 

Figure A.8.  Neoclassical three stage Production Function in 2 Inputs 

Think of this production function like a mountain and the same ideas from figure A.7 apply.  The 

X1 axis runs west to east.  The X2 axis runs south to north.  The Y axis runs into the sky and 

measures altitude.  Ok, so if you start at the origin (i.e., where all intersect) and start walking 

northeast then you are going to start walking “up the mountain” along the ridgeline.  Every step 
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you take going up this mountain you are taking a step north east and increasing your altitude.  

Note this means three things are happening or the values of three variables are changing with 

each step: the value of X1 is increasing, the value of X2 is increasing, and the value of Y is 

increasing.  

Now suppose you get tired of going up and just want to walk around the mountain at the 

same altitude.  In this case you would start just start walking to either the east or west.  Note as 

you continue to walk though if you want to stay at the same altitude then eventually you will go 

from just walking east (or west) and must start walking north again.  In mathematical terms you 

are walking along an isoquant (also known as a level curve or contour line).  The rings on the 

graph represent the isoquants (i.e., where the altitude or Y is constant).  Each isoquant is 

therefore associated with a specific altitude or value of Y. 

Suppose now you come walking around the mountain and there is a guy giving helicopter 

rides.  He says, “Do you want to see the mountain from the air?”  You say “sure”, so you hop in 

and the pilot takes you directly over the mountain.  What will it look like?  It will look like figure 

A.9 below.      
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The curve labeled Y500 refers to all points on the mountain corresponding to 500 feet.  This is 

the 500 foot isoquant.  Note there are numerous combinations of X1 and X2 that yield the same 

altitude: 2 1( , )more lessX X  and also 2 1( , )less moreX X .  Notice then if we want to stay at the same altitude 

as we decrease X2 we must increase X1 to offset the decrease in X2.  We therefore have the 

general principle: 

Moving along an isoquant shows the tradeoff between two inputs holding the output constant. 

This simple concept is one of the most useful and powerful in economics.  A vernacular way to 

say it is “there is more than one way to skin a cat.” 

Here are a couple of useful instructional videos on YouTube explaining where contour maps 

come from if you are still confused. 

https://www.youtube.com/watch?v=L1AWNR-Y0pQ 

https://www.youtube.com/watch?v=9kNkpQTwPc0 

V. Optimization 

One of the most important concepts in all of mathematics and science is optimization.  

Optimization is the process of determining the optimal value in satisfying some objective.  

Simply stated optimization means the “best” choice among all alternative choices.  Life is about 

optimization.  If you recall the definition of economics you now realize that optimization and 

economics goes hand in hand and it is for this reason that many say everything in life is about 

economics (i.e., choices).  Choosing the “best” school, the “best” degree program, the “best” job, 

the “best” boyfriend, or less consequential, the “best” car, the “best” phone, the “best” wine, or 

the “best dessert”.  Why is “best” in parenthesis?  Because what is “best” for you may not be 

what is best for someone else because you have different values or different objectives.  In 

addition, you may have to choose the “best” subject to conditions that others may not face.  For 

https://www.youtube.com/watch?v=L1AWNR-Y0pQ
https://www.youtube.com/watch?v=9kNkpQTwPc0
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example, what is the “best” car you would choose?  If you live in the city then the “best” may 

be a BMW 320i but if you live in the country “best” may be a Dodge Ram truck.  In addition, 

even if you live in the city, if you only make $20,000 a year then your “best” car may be a 2002 

Mazda 626 because that is all you can afford.  In this case your “best” choice is constrained by 

your income.  This leads to the need to distinguish between unconstrained optimization and 

constrained optimization.  Unconstrained optimization refers to the situation where there is no 

impediment or barrier to finding the optimal value.  Constrained optimization refers to the 

situation where there is an impediment or barrier to reaching the unconstrained optimal value.    

Note also that the term optimization can apply to maximization or minimization and each of 

these is just a special case of optimization.  Maximization is the process of determining the 

largest value in satisfying some objective.  Minimization is the process of determining the 

smallest value in satisfying some objective.  An individual may want to maximize their income, 

but they probably want to minimize how much they spend for a car.  In addition, in some cases 

we may be only considering the value of one variable to choose to optimize something.  For 

example, if you are trying to maximize your income then you would choose the job with the 

highest salary.  However, in other situations you may be trying to consider two or more variables 

to choose to optimize something.  For example, every time you eat a meal you are deciding the 

unique combinations of solid food and liquid to consume until you are satisfied.  In this section 

we discuss unconstrained optimization and constrained optimization for one and two variables 

focusing on maximization and minimization. 

Unconstrained Optimization with One Choice Variable 

Here we cover unconstrained optimization with one choice variable for maximization and 

minimization problems. 
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Unconstrained maximization with one choice variable is the case where there is a single 

variable whose value can be chosen to maximize some function.  We have already seen a graph 

for maximization and it is repeated below in Figure A.10.  Note up to XB the value of Y is 

increasing.  This means the slope is positive and though the rate at which Y is increasing is 

decreasing the value of Y is still increasing for every additional unit of X added.  At point XB the 

value of Y is at the maximum (Ymax).  Using function notation we would write this maximum 

point as Ymax = f(XB).  Note also at the maximum the slope of the function is zero!  Beyond point 

XB the value of Y is decreasing.  Thus if you choose X beyond XB the value of Y starts to 

decrease.  A good example of this would be some type of nutrient.  Up to some point the health 

benefits are increasing but beyond that point the health benefits may begin to decline as you have 

reached a toxic level of the nutrient. 

 

  

 

 

 

 

 

 

Unconstrained minimization with one choice variable is the case where there is a single 

variable whose value can be chosen to minimize some function.  A graph of a function to 

minimize has already been shown and is repeated below in Figure A.11.  Note up to XB the value 

of Y is decreasing.  This means the slope is negative and though the rate at which Y is decreasing 

is decreasing the value of Y is still decreasing for every additional unit of X added.  At point XB 

X XA XB XC 

Y 

Ymax 

Figure A.10 Maximization 
One Choice Variable 
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the value of Y is at the minimum (Ymin).  Using function notation we would write this 

minimum point as Ymin = f(XB).  Note also at the minimum the slope of the function is zero!  

Beyond point XB the value of Y is increasing.  Thus if you choose X beyond XB the value of Y 

starts to increase.  A good example of this type of relationship may be average food costs per 

person in a household related to number of individuals in the household.  The total cost of 

groceries will increase as the number of individuals in the household increases.  However, the 

cost per person (average cost) may actually decrease up to some point (say 4 people) before it 

starts to increase again. 

 

 

 

 

 

 

 

 

 

Unconstrained Optimization with Two Choice Variables 

In the above cases, the value of Y only depended on one variable, X.  However, in many cases 

the value of some variable of interest will often depend on more than one variable.  For example, 

we know that a gram of carbohydrates is worth 4 calories and a gram of fat is worth 9 calories.  

Thus someone’s weight could be written as weight (Y) is a function (or depends on) the amount 

of carbohydrates (X1) and the amount of fat (X2), along with many other things we are ignoring 

at this point.  In function notation we write this “production” function as Y = f(X1, X2).   

X 

Y 

Ymin 

XA XB XA 

Figure A.11. Minimization        
One Choice Variable 
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 Unconstrained maximization with two choice variables is the case where there are 

two variable whose value can be chosen to maximize some function.  Think again of climbing 

the mountain we drew in figure A.9 but now let’s draw the complete mountain top as shown in 

figure A.12. 

 

 

 

 

 

 

This is the view from the helicopter of the top of the mountain.  As before, the notation Y500 

denotes the isoquant or level curve where the altitude is 500 feet and the entire outer circle is 500 

feet.  The next inner circle denotes the isoquant of 1000 feet (Y1000), followed by the 2000 foot 

isoquant (Y2000) and the top of the mountain, which is 3000 feet (Y3000).  Note to get to the top of 

this mountain you must go to the coordinates * *
1 2( , )X X .  What is true at this point?  Well 

because you are at the top (you can’t go any higher), then the slope at the top is zero in all 

directions.  In addition, or alternatively stated, any other coordinate combinations will put you at 

a lower altitude!!  In function notation we will write this maximum point as * *
max 1 2( , )Y f X X= . 

Unconstrained minimization with two choice variables is the case where there are two 

variable whose value can be chosen to minimize some function.  Think now of climbing down 

Y500 

• 

Figure A.12. Maximization 
Two Choice Variables 
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into a gorge or big hole.  We can use a graph similar to figure A.12 to show the minimization 

as shown in figure A.13. 

 

 

 

 

 

 

This is the view from the top of the hole.  As before, the notation Y0 denotes the isoquant or level 

curve where the altitude is zero feet or ground level and the entire outer circle is 0 feet.  The next 

inner circle denotes the isoquant of -500 feet (Y-500), followed by the -1500 foot isoquant (Y-1500) 

and the bottom of the hole, which is -2500 feet (Y-2500).  Note to get to the bottom of this hole or 

gorge you must go to the co-ordinates * *
1 2( , )X X .  What is true at this point?  Well because you 

are at the bottom (you can’t go any lower), then the slope at the bottom is zero in all directions.  

In addition, or alternatively stated, any other coordinate combinations will put you at a higher 

altitude!!  In function notation we will write this maximum point as * *
min 1 2( , )Y f X X= . 

Constrained Optimization with One Choice Variable 

In most cases optimization cannot occur without some barriers or impediments.  As 

mentioned earlier, you may want a 2009 BMI 320i for your car and if money were no object then 

that would be what you would buy.  However, money is an object and what you are able to buy 

is not the same as what you may want to buy.  Your income constrains what you can afford to 

Y0 

• 

Figure A.13. Minimization 
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buy.  So we immediately see what may be optimal in an unconstrained setting (a 2009 BMI 

320i) is infeasible in a constrained setting. 

Constrained optimization is very easy to see graphically.  Suppose we are considering 

“producing” a good score on an exam (Y) and the input in this production function is time 

studying (X).  Now suppose you go to class six hours a day (including commute time and other 

incidental time) and you work at the local coffee shop six hours a day.  That leaves you 12 hours 

for sleeping, eating, personal hygiene, studying, and leisure.  You have determined that you can 

spend at most six hours studying for the exam.  So the range of X is now restricted to be 0 – 6 

hours, or in mathematical terms X ≤ 6 hrs.  How can we show this graphically?  Well using the 

three stage production function graph from earlier we can show this as in figure A.14.  Studying 

the full 6 hours allows you to reach the constrained score (SC).  However, if this constraint were 

not in place or not binding, then you could have studied TU and achieved the optimal 

unconstrained score of SU.  
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THINK BREAK!!!! 

• What happens in figure A.14 if the time constraint is relaxed to say 6 ≤ X ≤ 10? 

• What happens in figure A.14 if the time constraint is relaxed to say X > TU? 

The constrained minimization problem is similar.  Just change the word ‘maximize’ to 

‘minimize.’  Constrained minimization with one choice variable is the case where there is a 

single variable whose value can be chosen to minimize some function subject to a constraint.   

A graphical representation of a constrained minimization problem could look like figure A.15. 

 

 

 

 

 

 

 

 

 

In figure A.15 the constrained minimum is point is (XC, YC) whereas the unconstrained 

minimization point is (XU, YU). 

Constrained Optimization with Two Choice Variables 

Just as a constraint can prevent you from reaching the optimal value when there is a single 

variable to choose, the same concept applies in the more general case: a constraint in a two 

variable choice context prevents you from reaching the unconstrained optimum.  Let’s again 

consider this graphically first.  Suppose you are once again walking up the mountain as before in 

X 
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YU 

XC XU 

Figure A.15. Constrained Minimization                
One Choice Variable 
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figure A.12.  However, now there is a man named G.O. Away who owns the top part of the 

mountain and he has built a wall than runs from the Northwest to the Southeast.  From the 

helicopter view, the mountain with the wall looks like figure A.16 

 

 

 

 

 

 

 

 

 

Now suppose you start walking up the mountain with the intention of going to the highest point.  

You start walking from the origin to the Northeast. You pass 500 feet and then you pass 1000 

feet but at 2000 feet you run into the wall at the co-ordinates (X1
C, X2

C).  You decide to attempt 

to walk around the wall and get higher and decide to walk Southeast along the wall.  However, as 

you walk Southeast you realize your altitude is decreasing.  You keep walking until you reach 

the point where X1
U intersects the wall and at this point the altitude is 1000 feet.  You then decide 

to go back and walk Northwest along the wall.  As you go back toward your original starting 

point (X1
C, X2

C) the altitude is increasing.  Encouraged you continue to walk Northwest along the 

wall.  However, once you pass your original starting point (X1
C, X2

C) the altitude starts to 

decrease again.  You conclude (correctly) that the highest point you can reach on the mountain 

given the wall is at point (X1
C, X2

C).  What is unique about this point?  At this point, the wall is 

tangent to the isoquant for 2000 feet.  Recall, tangent means the slope of one line is equal to the 

• 

Figure A.16. Constrained 
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slope of another line.  In this case, the slope of the wall is equal to the slope of the isoquant at 

2000 feet.   

THINK BREAK!!!! 

• Using figure A.16 as a guide, can you use figure A.13 to draw the constrained 

minimization graph and explain? 

VI. Conclusions 

The purpose of this mathematical appendix is to help you “brush off the math rust” and 

provide you a general overview of the main mathematical concepts that are used in the book.  As 

indicated in the book and here, mathematics is best considered a language for communicating 

concepts.  Like all languages it is better at communicating some ideas than others.  The appeal of 

the mathematical language is its precision in discussing, describing, and explaining relationships 

between variables, their logical connections, and their logical implications.  The precision is 

extremely helpful in avoiding logical errors that easily occur when using a less precise language 

(e.g. words) that is not well suited for understanding and deriving logical implications from the 

interactions of variables.  The reader who is comfortable with the ‘language’ of this appendix 

will find the material in the book much easier to understand, will travel much further in their 

journey through the land of economics, and will gain a much deeper appreciation for its 

advantages and disadvantages in addressing issues related to food and nutrition.  
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